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ST-segment dynamics during reperfusion period and the size of
myocardial injury in experimental myocardial infarction
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Abstract Background: Exacerbation of ST elevation associated with reperfusion has been reported in patients
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with myocardial infarction. However, the cause of the “reperfusion peak” and relation of its
magnitude to the size of myocardial damage has not been explored. The aim of our study was to
assess the correlation between the ST-dynamics during reperfusion, the myocardium at risk (MaR),
and the infarct size (IS).
Methods: Infarction was induced in 15 pigs by a 40-minute-long balloon inflation in the left anterior
descending coronary artery. Tetrofosmin Tc 99m was given intravenously after 20 minutes of
occlusion, and ex vivo single photon emission computed tomography was performed to assess MaR.
Maximal ST elevation in a single lead and maximal sum of ST deviations in 12 leads were measured
before, during, and after occlusion from continuous 12-lead electrocardiographic monitoring. A
gadolinium-based contrast agent was given intravenously 30 minutes before explantation of the
heart. Final IS was estimated using ex vivo cardiac magnetic resonance imaging.
Results: All pigs developed an anteroseptal infarct with MaR = 42% ± 9% and IS = 26% ± 7% of
left ventricle. In all pigs, reperfusion was accompanied by transitory exacerbation of ST elevation
that measured 1300 ± 500 μV as maximum in a single lead compared with 570 ± 220 μV at the end
of occlusion (P b .001). The transitory exacerbation of ST elevation exceeded the maximal ST
elevation during occlusion (920 ± 420 μV, P b .05). The ST elevation resolved by the end of the
reperfusion period (90 ± 30 μV, P b .001). Exacerbation of ST elevation after reperfusion correlated
with the final IS (r = 0.64, P = .025 for maximal ST elevation in a single lead and r = 0.80, P = .002
for sum of ST deviations) but not with MaR (r = 0.43, P = .17 for maximal ST elevation in a single
lead and r = 0.49, P = .11 for sum of ST deviations). The maximal ST elevation in a single lead and
the sum of ST deviations during occlusion did not correlate with either MaR or final IS.
Conclusion: In the experiment, exacerbation of ST elevation is common during restoration of blood
flow in the occluded coronary artery. The magnitude of the exacerbation of ST elevation after
reperfusion in experimentally induced myocardial infarction in pigs is associated with infarct size but
not with MaR.
© 2011 Elsevier Inc. All rights reserved.
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Introduction

The main treatment strategy of ST-elevation myocardial
infarction (STEMI) is early administration of reperfusion
therapy.1-2 Early reperfusion therapy has been shown to limit
myocardial infarct size (IS) and to reduce mortality.1,3-4
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It is well known that successful restoration of blood flow
in the infarct-related artery is accompanied by a fast
ST-elevation resolution5; thus, the ECG estimation is a
common indirect method for assessing efficacy of reperfu-
sion therapy.6 Several previous studies have shown a short-
term exacerbation of ST-segment elevation followed by
complete ST-resolution during reperfusion.7-10 The cause of
this “reperfusion peak” and its relation to the extent of
myocardial injury is not fully understood.

Thus, the aim of the present study was to assess the
relationship between ST dynamics during reperfusion and
size of myocardium at risk (MaR) as well as final IS in
experimentally induced myocardial infarction in pigs.
Methods

Experimental protocol

After induction of anesthesia, ischemia was induced by
inflation of an angioplasty balloon for 40 minutes. An
angiogram was performed after inflation of the balloon and
before deflation of the balloon to verify total occlusion of the
coronary vessel and correct balloon positioning. After
deflation of the balloon, a subsequent angiogram was
performed to verify restoration of blood flow in the
previously occluded artery. Twelve-lead ECG monitoring
was initiated before starting the occlusion and lasted
throughout the occlusion and continued until 4 hours after
reperfusion when the experiment was terminated. The hearts
were then explanted and analyzed by single photon emission
computed tomography (SPECT) for assessment of MaR and
by cardiac magnetic resonance (CMR) for assessment of IS.

The study conforms to the Guide for the Care and Use of
Laboratory Animals, US National Institute of Health (NIH
Publication No. 85-23, revised 1996), and was approved by
the local animal research ethics committee.

Experimental preparation

Fifteen healthy domestic male and female pigs weighing
40 to 50 kg were fasted overnight with free access to water
and were premedicated with Ketaminol (Ketamine, Intervet,
Danderyd, Sweden), 100mg/mL, 1.5mL/10 kg, and Rompun
(Xylazin, Bayer AG, Leverkusen, Germany), 20 mg/mL,
1 mL/10 kg intramuscularly 30 minutes before the procedure.
After induction of anesthesia with thiopental 12.5 mg/kg
(Pentothal, Abbott, Stockholm, Sweden), the animals were
orally intubated with cuffed endotracheal tubes. A slow
infusion of 1 μl/mL fentanyl (Fentanyl, Pharmalink AB,
Stockholm, Sweden) in buffered glucose (25 mg/mL) was
started at a rate of 2 mL/min and adjusted as needed. During
balanced anesthesia, thiopental (Pentothal, Abbott) was
titrated against animal requirements with small bolus doses.
Mechanical ventilation was established with a Siemens-
Elema 900B ventilator in the volume-controlled mode,
adjusted to obtain normocapnia (PCO2 5.0-6.0 kPa). The
animals were ventilated with amixture of nitrous oxide (70%)
and oxygen (30%). Analysis of arterial blood gases to adjust
ventilation was performed before initiation of ischemia, at
reperfusion, and at 1 hour after reperfusion. The pigs were
continuously monitored by electrocardiogram (ECG). Arte-
rial blood pressure was measured using a blood pressure
transducer (ADInstruments Inc, Colorado Springs, CO).
Heparin (200 IU/kg) was given intravenously at the start of
the catheterization. A 12F introducer sheath (Boston
Scientific Scimed, Maple Grove, MN) was inserted into the
surgically exposed left femoral vein. A 0.021-in guide wire
(Safe-T-J Curved, Cook Medical Inc, Bloomington, IN) was
inserted into the proximal inferior vena cava through the
introducer. Using the guide wire, a 10.7F Celsius Control
catheter (Innercool Therapies Inc, San Diego, CA) was
placed into the inferior vena cava with the tip of the catheter at
the level of the diaphragm. Body temperature was measured
with a temperature probe (TYCO Healthcare Norden AB,
Solna, Sweden) placed in the distal part of the esophagus. The
catheter and the temperature probe were connected to the
Celsius Control, and the system was set to maintain a normal
pig body temperature of 38.0° C. A 6F introducer sheath
(Boston Scientific Scimed) was inserted into the surgically
exposed left carotid artery upon which a 6F FL4 Wiseguide
(Boston Scientific Scimed) was inserted into the left main
coronary artery. The catheter was used to place a 0.014-in PT
Choice guide wire (Boston Scientific Scimed) into the distal
portion of the left anterior descending coronary artery (LAD).
A 3.0 to 3.5 × 15 mmMaverick monorail angioplasty balloon
(Boston Scientific Scimed) was then positioned in the mid
portion of the LAD, immediately distal to the first diagonal
branch. A 9F introducer sheath (Boston Scientific Scimed)
was inserted into the surgically exposed right jugular vein. A
7.5F Continuous Cardiac Output Pulmonary Artery Catheter
(Edwards Lifesciences, Irvine, CA) was then inserted into a
pulmonary artery. Cardiac Output was continuously recorded
using a Vigilance monitor (Edwards Lifesciences). All
radiologic procedures were performed at the Biomedical
Center at the Lund University, Lund, Sweden, using an
experimental catheterization laboratory (Shimadzu Corp,
Kyoto, Japan).
Electrocardiographic monitoring

A 12-lead digital ECG monitor (“Kardiotechnica-04-8m,”
Incart, St. Petersburg, Russia) with a sampling rate of
1024 Hz was used for assessing ST dynamics during
occlusion/reperfusion. The use of the x-ray negative cable
(“MAC LAB,” USA) allowed continuous 12-lead ECG
monitoring in angiographic laboratory with sampling
frequency of 1000 Hz and amplitude resolution of 1.4 μV.

Complete analysis of QRS morphology was performed
automatically on all QRS complexes with subsequent manual
control before ST-segment analysis so that only QRS
complexes of supraventricular origin were included for
calculation of ST-segment deviation. The average level of
signal at the area 40 to 20 milliseconds before onset of the
QRS complex was referred to as the baseline. ST-segment
deviation was then measured automatically 40 milliseconds
after the J point for each QRS complex with subsequent
hysteresis averaging-out. Averaging was based on 30
complexes, but QRS complexes with large deviation from
average were excluded from the analysis. Continuous
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analysis of ST-segment recovery was based on all 12 ECG
leads.Maximal ST elevation in a single lead with greatest ST-
segment elevation as well as the sum of ST-segment
deviations (both elevations and reciprocal depressions) were
assessed at baseline, during occlusion, and reperfusion
periods. The time to complete ST resolution was estimated.
ST resolution was defined as complete when residual ST
elevationwas less than 100μV in leads I, II, III, aVF, aVL, V4

through V6 and 200 μV in V1 through V3 and ST stabilization
at this level throughout all the period of observation.11

Imaging

Ex vivo imaging of the heart was undertaken according to
a previously described protocol.12 Cardiac magnetic reso-
nance and SPECT images were analyzed using freely
available software (Segment v1.700, Medviso, Lund,
Sweden; http://segment.heiberg.se).13

Assessment of MaR by ex vivo SPECT

SPECT was used to assess the MaR as percentage of left
ventricular myocardium. One thousand megabecquerel of
Fig. 1. Imaging of MaR and final IS after experimentally induced ischemia by oc
visualization of the anteroseptal infarction (solid arrows). Dark gray myocardium
Single photon emission computed tomography used to assess the MaR by visua
indicate adequate perfusion and cold/absent colors indicate decreased/lack of perf
shows a mid-ventricular short-axis slice and the lower 2 panels show 2 long-axis s
delineated in the MR images and fused with the co-registered SPECT images. LV
tetrofosmin Tc 99m was administered intravenously at the
20th minute of occlusion. Ex vivo imaging was performed
with a dual-head camera (Skylight, Philips, Best, the
Netherlands) at 32 projections (40 seconds per projection)
with a 64 × 64 matrix yielding a digital resolution of 5 × 5 ×
5 mm. Iterative reconstruction using maximum likelihood-
expectation maximization was performed with a low-
resolution Butterworth filter with a cutoff frequency set to
0.6 of Nyquist and order 5.0. No attenuation or scatter
correction was applied. Finally, short- and long-axis images
were reconstructed. The endocardial and epicardial borders of
the left ventricle that were manually delineated in the CMR
images were copied to the co-registered SPECT images
(Fig. 1). A SPECT defect was defined as a region within the
CMR-determined myocardiumwith counts lower than 55% of
the maximum counts in the myocardium and expressed as a
percentage of left ventricle as previously described.14
Infarct size assessed by ex vivo CMR

The method used to assess IS by CMR has previously
been described in detail.12,15,16 In brief, a gadolinium-based
cluding the LAD. Left column, Magnetic resonance imaging performed fo
indicates viable myocardium and white indicates infarction. Middle column
lization of the anteroseptal perfusion defect (dashed arrows). Warm color
usion. Right column, Fusion of MRI and SPECT images. The upper pane
lices. Endocardial and epicardial borders of the left ventricle were manually
indicates left ventricle; RV, right ventricle.
r
,
s
l
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contrast agent (Dotarem, gadoteric acid, Gothia Medical
AB, Billdal, Sweden) was administered intravenously (0.4
mmol/kg) 30 minutes before removal of the heart. After
removal, the heart was immediately rinsed in cold saline
and the ventricles were filled with balloons containing
deuterated water. CMR was performed using a 1.5-T MR
scanner (Intera, Philips). T1-weighted images (repetition
time = 20 milliseconds, echo time = 3.2 milliseconds, flip
angle = 70°, and 2 averages) with an isotropic resolution of
0.5 mm covering the entire heart were then acquired using
a quadrature head coil.

The endocardial and epicardial borders of the left
ventricular myocardium were manually delineated in short-
axis ex vivo images. This defined the left ventricular
myocardium. The infarcted myocardium was defined as the
myocardium with a signal intensity of greater than 8 SD
above the average intensity of the nonaffected remote
myocardium.16 The infarcted myocardium was then quan-
tified as the product of the slice thickness and the area of
hyperenhanced myocardium. The IS was expressed as
percentage of left ventricular myocardium.
Fig. 2. ST-segment monitoring during 40 minutes of LAD occlusion and 4 h
shortly after onset of reperfusion (“reperfusion peak”) exemplified in this figur
baseline; B, maximum of ST elevation during occlusion period; C, ECG at the
of experiment.
Statistical methods

Data are presented as mean values ± SDs. Pearson
correlation was used for assessment of relationships between
ST-segment indices and MaR/IS. Paired-samples t test was
used for comparisons between ST-segment indices at different
stages of experiment. Statistical analyses were performed
using PASW Statistics 18 (release 18.0.0, July 30, 2009).

Results

Experiment performance and data availability

All 15 animals survived during occlusion and early
reperfusion period, despite frequent ventricular arrhythmias.
Nine animals received defibrillation for ventricular fibrilla-
tion/hemodynamically important ventricular tachycardia
during the occlusion period; 7, during reperfusion period.

Ex vivo imaging of the heart was performed in the 13
animals that survived for the 4 hours of reperfusion. Two
pigs died during the experiment before the MRI contrast
agent was administered. One more animal was excluded
ours of reperfusion. Transient exacerbation of the ST-segment elevation
e was observed in all animals. HR indicates heart rate. A, ECG strip a
end of occlusion; D, ECG at the “reperfusion peak”; E, ECG at the end
t

image of Fig. 2


Table 1
ST elevation during occlusion and reperfusion periods

Maximal level
during occlusion

Immediately before
onset of reperfusion

Maximal during reperfusion
(“reperfusion peak”)

End of experiment

ST elevation in a single
lead (V2 or V3) (μV)

920 ± 420 570 ± 220 1300 ± 500⁎ 90 ± 30⁎,#

Sum of ST deviations in
all 12 leads (μV)

2620 ± 1490 1681 ± 658 3590 ± 1420⁎ 306 ± 150⁎,#

⁎ P b .001 for comparison with the ST elevation at the end of occlusion.
# P b .001 for comparison with the ST elevation at the “reperfusion peak.”
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from the analysis because of anomalous coronary anatomy.
Thus, the association between ECG findings and MaR/IS
was analyzed in 12 animals, whereas ECG data were
analyzed for all 15.

ST dynamics during LAD occlusion

Typical ST dynamics during the occlusion and reperfu-
sion is shown in Fig. 2. ST elevation occurred immediately
after balloon inflation and reached its maximum 307 ± 101
seconds after the start of occlusion and decreased during the
occlusion period (Table 1, Fig. 3). In all cases, an
anteroseptal infarction with the greatest ST elevation in
lead V3 (n = 9) or V2 (n = 6) developed.

ST dynamics during reperfusion

The angiographically verified blood flow restoration was
accompanied by exacerbation of ST elevation in all 15 cases
(see Fig. 2). The ST elevation started increasing shortly after
LAD opening and reached its maximum 186 ± 102 seconds
later. In 13 of 15 animals, the maximum level of ST elevation
during reperfusion exceeded the ST elevation during the
occlusion period. The maximal ST-segment elevation in a
single lead with the greatest ST elevation and sum of ST
deviations in all 12 leads during reperfusion are shown in
Table 1 and Fig. 3. When maximal ST-segment elevation in
a single lead was assessed, it was measured in the same lead
(V2 or V3) during occlusion and reperfusion periods in all
animals. During reperfusion, ST elevation in a single lead
Fig. 3. Sum of ST deviations in all leads during occlusion and
reperfusion periods.
increased by 143% ± 104% (42%-370%) compared with ST
elevation at the end of occlusion. The sum of ST elevation
and reciprocal ST depression increased during reperfusion
by 126% ± 109% (46%-390%) compared with the level at
the end of occlusion. The reperfusion peak was followed by a
fast resolution of ST elevation. The time to complete ST
resolution was estimated as 55 ± 33 minutes. Upon reaching
the complete resolution, the ST level remained stable until
the end of experiment.

Correlation between the ST elevation, MaR, and final IS

The MaR was 42% ± 9% (range, 28%-57%) and the IS
was 26% ± 7% (range, 14%-40%) of the left ventricle. ST
elevation during the occlusion period was not associated
with either MaR or IS. The magnitude of transitory ST
elevation exacerbation during the reperfusion was, however,
correlated with IS, but not with MaR (Table 2 and Fig. 4).

Discussion

The ST dynamics analysis during the reperfusion therapy
is commonly used for noninvasive assessment of reperfusion
therapy efficacy,6 estimation of microvascular perfusion,17

and risk stratification of patients with STEMI.18,19 It has been
shown that rapid and high-grade ST resolution after
reperfusion therapy is associated with better left ventricular
function,20-22 a lower enzyme level, and greater myocardial
salvage measured by the nuclear imaging.20,23 In clinical
settings, the extent of ST-resolution and the time to ST-
resolution are usually assessed based on discrete ECG strips
only. Limited studies using 12-lead continuous ECG
monitoring in the settings of STEMI have reported
occurrence of short-term ST-elevation exacerbation followed
by the complete ST resolution during reperfusion achieved by
either thrombolytic therapy24 or percutaneous coronary
intervention (PCI).11,25

In the present study, a continuous 12-lead ECG
monitoring and angiographic verification of LAD occlusion
and complete restoration of blood flow enabled exploration
of ST dynamics related to reperfusion in the infarct-related
artery. The restoration of blood flow in the infarct-related
artery was found to be accompanied by the transient
exacerbation of ST-segment elevation in all 15 cases. The
ST elevation exacerbated after LAD opening, reached its
maximum 2 to 4 minutes later, and returned to the pre-
reperfusion level 10 to 15 minutes later. Thereafter, the ST
elevation gradually decreased toward complete resolution.

image of Fig. 3


Table 2
The relationship between the ST elevation during the occlusion/reperfusion
and the MaR and the final IS (Pearson correlation [P value])

Occlusion period Reperfusion period

MaR Final IS MaR Final IS

ST max in single lead −0.27 (.40) −0.45 (.16) 0.43 (.17) 0.64 (.025)
Sum of ST deviations −0.11 (.74) −0.21 (.50) 0.49 (.11) 0.80 (.002)
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This sharp deflection of the ST curve after reperfusion has
earlier been referred to as a “reperfusion peak”.24,26

In clinical settings, reperfusion peak has been observed in
68% to 75% of patients with STEMI effectively treated with
thrombolysis8,9 and in 23% to 63% of patients undergoing
primary PCI.7,11,25 Some data suggest that the reperfusion
peak may be a more common finding during thrombolysis
rather than during primary PCI.27 In fact, the appearance and
the magnitude of the reperfusion peak observed in clinical
settings and in the present study are similar. In the present
study, where all animals showed a reperfusion peak, the
occlusion period was 40 minutes. In clinical practice, such
short interval from symptom onset to balloon inflation is rarely
seen. On the other hand, Terkelsen et al25 did not find any
relation between reperfusion peak presence or absence and
time symptom onset to balloon inflation in a previous study
addressing this issue. Furthermore, the mode of occlusion and
reperfusion in clinical settings and experiment may also play
role. The experimental model used in the present study is
based on instant and complete mechanical occlusion and
reperfusion of LAD. In clinical settings, thrombotic
occlusion occurs through an inflammatory and coagulation
cascade, often alternates with spontaneous clot lysis, and is
associated with distal embolization and vasospasm. These
Fig. 4. Relationship between final IS and maximal ST-segment elevation in a singl
(A and C) and reperfusion (B and D) periods. LVM indicates left ventricular mas
factors may result in intermittent flow obstruction and
partial restoration of blood flow contributing to pre- and
postconditioning, which might affect the underlying patho-
physiology of ST dynamics related to reperfusion.

Currently, there is no agreement in regard to the
explanation of the nature of the reperfusion peak. Some
data suggest that the peak is a sign of successful reperfusion
and is associated with fast ST resolution8,9,24 and favorable
clinical outcome.8 Several observations indicate that the
peak is observed in case of severe myocardial injury before
the onset of reperfusion associated with marked ST
elevation, poor collateral circulation, and larger amount of
myocardium involved in the ischemia-reperfusion process.28

Another plausible explanation is that the peak reflects
reperfusion injury that contributes to the final IS29 and
caused by distal embolization with clot fragments and
leukocyte aggregates, platelet activation, microcirculatory
spasm, and edema.30,31 It is also possible that reperfusion
peak is not a consequence of additional myocardial damage
but rather a pure electrophysiologic phenomenon caused by
potassium washout during reperfusion.32-34

Earlier studies demonstrated the relation between the
presence of the exacerbation of ST-elevation during
reperfusion period and the greater extent of myocardial
injury using indirect markers such as maximal level of
troponin, ejection fraction, or Selvester ECG score.11,35

Recently, similar findings were reported using a quantitative
assessment of IS by SPECT.25

The present study is the first to correlate not only the
presence of the peak but also the degree of ST-elevation
exacerbation during the reperfusion with both MaR and IS,
assessed quantitatively by SPECT and cardiac MRI. The
findings indicate that magnitude of ST elevation at
e lead with greatest ST elevation and sum of ST deviations during occlusion
s; r, Pearson correlation coefficient.

image of Fig. 4
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“reperfusion peak” is associated with the IS but not with the
MaR. ST elevation during the occlusion period was,
however, not associated with either MaR or IS.

The association between the degree of ST elevation at
the “reperfusion peak” and IS suggests that assessment of
maximal ST elevation during reperfusion may be used for
prediction of IS. The sum of ST deviations in all 12 leads
appears to be a preferable marker for predicting the IS
compared to the ST elevation in a single lead with the
highest ST elevation. Further studies are needed to evaluate
the usefulness of measurements of ST elevation during
reperfusion period to assess its value for IS prediction and
risk stratification in patients with STEMI treated with
primary angioplasty.

Limitations

The findings in the present study should be interpreted in
the light of some limitations. To achieve reproducibility of
myocardial lesion in the settings of a limited number of
experimental animals, only LAD occlusions were induced
and uniform durations of ischemia (40 minutes) were
applied. Therefore, evaluation of the effect of variability in
duration of ischemia or location of the culprit vessel on the
ST-segment deviation pattern and MaR/IS would require
substantially greater number of experimental animals and
remains to be explored.

As pointed out in the Discussion, the experimental model
of myocardial infarction produced by inflation and deflation
of the balloon does not fully reflect the course of events
during STEMI in humans, which may at least in part explain
discrepancy between our findings and clinical observations
with regard to the frequency of reperfusion peak observed.
Thus, to which extent the findings in the present study reflect
the situation in patients with STEMI remains to be explored.

Finally, the timing of clinical CMR examinations for
infarct sizing in patients with STEMI is usually much later
than 4 hours after reperfusion that was used in the present
study. There are observations suggesting that IS measure-
ments using extracellular gadolinium-based contrast agents
early after reperfusion may lead to overestimation of
actual IS.36
Conclusion

Exacerbation of ST elevation is common during restora-
tion of blood flow in the occluded coronary artery. The
magnitude of the exacerbation of ST elevation after
reperfusion in experimentally induced myocardial infarction
in pigs is associated with IS but not with MaR. The
prognostic value of this post-reperfusion exacerbation of ST
elevation in humans undergoing early reperfusion therapy
for STEMI remains to be determined.
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